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CS 360 → Lecture Notes → Lecture 5 

9/21/18, 8:19 AM 

Lecture 5: Master 
Theorem 

 
 
 

Solving Master Theorem 
 

 

 
Since divide and conquer algorithms occur quite 
frequently and produce recursive equations for their 
run times, it is important to be able to solve 
recursive equations. Last lecture we "solved" the 
recurrence equation for merge sort using a method 
known as a recursion tree. While this method can in 
theory always be used, it is often cumbersome. For 
problems that have a fixed number of identical sized 
recursive pieces there is a much simpler method 
known as the master theorem that can be used to 
solve certain recursive equations almost "by 
inspection". 

Master Theorem 
The master theorem can be employed to solve 
recursive equations of the form 

 
 

 

 
where a ≥ 1, b > 1, and f(n) is asymptotically 
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positive. Intuitively for divide and conquer 
algorithms, this equation represents dividing the 
problem up into a subproblems of size n/b with a 
combine time of f(n). For example, for merge sort a 
= 2, b = 2, and f(n) = Θ(n). Note that floors and 
ceilings for n/b do not affect the asymptotic 
behavior or the results derived using the theorem. 

If the recursion is in the form shown above, then the 
recurrence can be solved depending on one of three 
cases (which relate the dominance of the recursive 
term to the combine term): 

Case 1 
 

If 
 
 

 

for some constant ε > 0, then the solution to the 
recurrence is given by 

 

 

In this case, f(n) is polynomially bounded above by 
(which represents the run time of the recursive 

term), i.e. the recursive term dominates the run 
time. 
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Case 2 
 

If 
 
 

 

then the solution to the recurrence is given by 
 
 

 

In this case, f(n) is "equal" to , i.e. neither term 
dominates thus the extra term to get the bound. 

Case 3 
 

If 
 
 

 

for some constant ε > 0 AND if a f(n/b) ≤ c f(n) 
for some constant c < 1 and sufficiently large n 
(this additional constraint is known as the regularity 
condition), then the solution to the recurrence is 
given by 

 
 

 

In this case, f(n) is polynomially bounded below by 
(which represents the run time of the recursive 

term) with the additional regularity condition, i.e. 
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the combine term dominates the run time. 
 

Thus in all three cases it is important to compute the 
recursive term run time and compare it 
asymptotically to the combine term run time to 
determine which case holds. If the recursive 
equation satifies either case 1 or case 2, the solution 
can then be written by inspection. If the recursive 
equation satisfies case 3, then the regularity 
condition must be verified in order to write down the 
solution. 

Note: There are gaps between the cases where the 
theorem cannot be applied (as well as recursive 
equations that do not fit the form required by the 
theorem exactly). In these cases, other techniques 
must be used which we will see next lecture. 

Examples 
Example 1 

 
Solve the recursive equation 

 
 

 

For this equation a = 9, b = 3, and f(n) = n. 
Intuitively this equation would represent an 
algorithm that divides the original inputs into nine 
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groups each consisting of a third of the elements 
and takes linear time to combine the results. 
Computing 

 
 

 

Then 
 
 

 

which is satisfied for any ε ≤ 1, e.g. choose ε = 1. 
Hence the equation satisfies Case 1 so the solution 
is 

 
 

 

Example 2 
 

Solve the recursive equation 
 
 

 

For this equation a = 1, b = 3/2, and f(n) = 1. 
Intuitively this equation would represent an 
algorithm that only uses two thirds of the elements 
at each step and takes constant time to combine the 
results. Computing 

 
 

 

Then 
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Hence the equation satisfies Case 2 so the solution 
is 

 

 

Example 3 
 

Solve the recursive equation 
 
 

 

For this equation a = 3, b = 4, and f(n) = n lg n. 
Intuitively this equation would represent an 
algorithm that divides the original inputs into three 
groups each consisting of a quarter of the elements 
and takes linearlog time to combine the results. 
Computing 

 
 

 

Then 
 
 

 

which is satisfied for any ε ≤ 0.21, e.g. choose ε = 
0.2. Hence the equation might satisfy Case 3 so 
checking regularity 
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Thus regularity holds by choosing c = 3/4 < 1. 
Therefore the equation satisfies Case 3 so the 
solution is 

 
 

 

Example 4 
 

Solve the recursive equation 
 
 

 

For this equation a = 2, b = 2, and f(n) = n lg n. 
Intuitively this equation would represent an 
algorithm that divides the original inputs into two 
groups each consisting of half of the elements and 
takes linearlog time to combine the results. 
Computing 

 
 

 

Then 
 
 

 

which is almost Case 3 but while n lg n ≥ n 
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asymptotically, it is not polynomially bounded - i.e. 
there is no ε that satisfies the above equation. 
Therefore Case 3 does not apply. 

 
For this example we can apply a generalization to 
Case 2 which states that if 

 
 
 
 

for k ≥ 0 (note that k = 0 for the standard Case 2), 
then the solution is given by 

 
 
 
 

Hence for this example 
 
 
 
 

for k = 1. Therefore the equation satisfies the 
extended Case 2 so the solution is 


