
Page 1 of 8

CS 360 → Lecture Notes → Lecture 5

9/21/18, 8:19 AM

Lecture 5: Master
Theorem

Solving Master Theorem

Since divide and conquer algorithms occur quite
frequently and produce recursive equations for their
run times, it is important to be able to solve
recursive equations. Last lecture we "solved" the
recurrence equation for merge sort using a method
known as a recursion tree. While this method can in
theory always be used, it is often cumbersome. For
problems that have a fixed number of identical sized
recursive pieces there is a much simpler method
known as the master theorem that can be used to
solve certain recursive equations almost "by
inspection".

Master Theorem
The master theorem can be employed to solve
recursive equations of the form

where a ≥ 1, b > 1, and f(n) is asymptotically

Page 2 of 8

9/21/18, 8:19 AM

positive. Intuitively for divide and conquer
algorithms, this equation represents dividing the
problem up into a subproblems of size n/b with a
combine time of f(n). For example, for merge sort a
= 2, b = 2, and f(n) = Θ(n). Note that floors and
ceilings for n/b do not affect the asymptotic
behavior or the results derived using the theorem.

If the recursion is in the form shown above, then the
recurrence can be solved depending on one of three
cases (which relate the dominance of the recursive
term to the combine term):

Case 1

If

for some constant ε > 0, then the solution to the
recurrence is given by

In this case, f(n) is polynomially bounded above by
(which represents the run time of the recursive

term), i.e. the recursive term dominates the run
time.

Page 3 of 8

9/21/18, 8:19 AM

Case 2

If

then the solution to the recurrence is given by

In this case, f(n) is "equal" to , i.e. neither term
dominates thus the extra term to get the bound.

Case 3

If

for some constant ε > 0 AND if a f(n/b) ≤ c f(n)
for some constant c < 1 and sufficiently large n
(this additional constraint is known as the regularity
condition), then the solution to the recurrence is
given by

In this case, f(n) is polynomially bounded below by
(which represents the run time of the recursive

term) with the additional regularity condition, i.e.

Page 4 of 8

9/21/18, 8:19 AM

the combine term dominates the run time.

Thus in all three cases it is important to compute the
recursive term run time and compare it
asymptotically to the combine term run time to
determine which case holds. If the recursive
equation satifies either case 1 or case 2, the solution
can then be written by inspection. If the recursive
equation satisfies case 3, then the regularity
condition must be verified in order to write down the
solution.

Note: There are gaps between the cases where the
theorem cannot be applied (as well as recursive
equations that do not fit the form required by the
theorem exactly). In these cases, other techniques
must be used which we will see next lecture.

Examples
Example 1

Solve the recursive equation

For this equation a = 9, b = 3, and f(n) = n.
Intuitively this equation would represent an
algorithm that divides the original inputs into nine

Page 5 of 8

9/21/18, 8:19 AM

groups each consisting of a third of the elements
and takes linear time to combine the results.
Computing

Then

which is satisfied for any ε ≤ 1, e.g. choose ε = 1.
Hence the equation satisfies Case 1 so the solution
is

Example 2

Solve the recursive equation

For this equation a = 1, b = 3/2, and f(n) = 1.
Intuitively this equation would represent an
algorithm that only uses two thirds of the elements
at each step and takes constant time to combine the
results. Computing

Then

Page 6 of 8

9/21/18, 8:19 AM

Hence the equation satisfies Case 2 so the solution
is

Example 3

Solve the recursive equation

For this equation a = 3, b = 4, and f(n) = n lg n.
Intuitively this equation would represent an
algorithm that divides the original inputs into three
groups each consisting of a quarter of the elements
and takes linearlog time to combine the results.
Computing

Then

which is satisfied for any ε ≤ 0.21, e.g. choose ε =
0.2. Hence the equation might satisfy Case 3 so
checking regularity

Page 7 of 8

9/21/18, 8:19 AM

Thus regularity holds by choosing c = 3/4 < 1.
Therefore the equation satisfies Case 3 so the
solution is

Example 4

Solve the recursive equation

For this equation a = 2, b = 2, and f(n) = n lg n.
Intuitively this equation would represent an
algorithm that divides the original inputs into two
groups each consisting of half of the elements and
takes linearlog time to combine the results.
Computing

Then

which is almost Case 3 but while n lg n ≥ n

Page 8 of 8

9/21/18, 8:19 AM

asymptotically, it is not polynomially bounded - i.e.
there is no ε that satisfies the above equation.
Therefore Case 3 does not apply.

For this example we can apply a generalization to
Case 2 which states that if

for k ≥ 0 (note that k = 0 for the standard Case 2),
then the solution is given by

Hence for this example

for k = 1. Therefore the equation satisfies the
extended Case 2 so the solution is

